Csermely, and Kahn. 1991. “The 90-KDa Heat Shock Protein (hsp-90) Possesses an ATP Binding Site and Autophosphorylating Activity”. J Biol Chem 266 (8): 4943-50.
Abstract
The 90-kDa heat shock protein (hsp-90) is an abundant cytosolic protein believed to play a role in maintenance of protein trafficking and closely associated with several steroid hormone receptors. Incubation of highly purified hsp-90 with [gamma-32P]ATP results in its autophosphorylation on serine residues. There are several lines of evidence which suggest that this activity is due to a kinase intrinsic to hsp-90 rather than some closely associated protein kinases: 1) the phosphorylation persists after the removal of casein kinase II by heparin chromatography and after immunoprecipitation of hsp-90 with anti-hsp-90 antibodies. 2) The approximate kM for ATP of the reaction is 0.16 mM, higher than that of many other protein kinases. 3) Phosphorylation is not affected by a number of activators and inhibitors of other known kinases which might associate with hsp-90. 4) The phosphorylation displays a unique cation dependence being most active in the presence of Ca2+ and practically inactive with Mg2+, although the autophosphorylation in the presence of Mg2+ is activated by histones and polyamines. 5) The activity is remarkably heat-stable; incubation of hsp-90 for 20 min at 95 degrees C results in only a 60% decrease in autophosphorylation. 6) Finally, and most importantly, purified hsp-90 can be labeled with azido-ATP and it is able to bind to ATP-agarose. The binding shows similar cation dependence to the autophosphorylation. These data are in agreement with the presence of a consensus sequence for ATP binding sites in the primary structure of the protein similar to that observed in the 70-kDa heat-shock proteins. Our data suggest the 90-kDa heat shock protein possesses an enzymatic activity analogous in many respects to the similar activity of the 70-kDa heat shock proteins. This may represent an important, previously unrecognized function of hsp-90.
Last updated on 03/08/2023