Publications
2023
Although many novel gene-metabolite and gene-protein associations have been identified using high-throughput biochemical profiling, systematic studies that leverage human genetics to illuminate causal relationships between circulating proteins and metabolites are lacking. Here, we performed protein-metabolite association studies in 3,626 plasma samples from three human cohorts. We detected 171,800 significant protein-metabolite pairwise correlations between 1,265 proteins and 365 metabolites, including established relationships in metabolic and signaling pathways such as the protein thyroxine-binding globulin and the metabolite thyroxine, as well as thousands of new findings. In Mendelian randomization (MR) analyses, we identified putative causal protein-to-metabolite associations. We experimentally validated top MR associations in proof-of-concept plasma metabolomics studies in three murine knockout strains of key protein regulators. These analyses identified previously unrecognized associations between bioactive proteins and metabolites in human plasma. We provide publicly available data to be leveraged for studies in human metabolism and disease.
2022
IMPORTANCE: African American individuals have disproportionate rates of coronary heart disease (CHD) but lower levels of coronary artery calcium (CAC), a marker of subclinical CHD, than non-Hispanic White individuals. African American individuals may have distinct metabolite profiles associated with incident CHD risk compared with non-Hispanic White individuals, and examination of these differences could highlight important processes that differ between them.
OBJECTIVES: To identify novel biomarkers of incident CHD and CAC among African American individuals and to replicate incident CHD findings in a multiethnic cohort.
DESIGN, SETTING, AND PARTICIPANTS: This analysis targeted plasma metabolomic profiling of 2346 participants in the Jackson Heart Study (JHS), a prospective population-based cohort study that included 5306 African American participants who were examined at baseline (2000-2004) and 2 follow-up visits. Replication of CHD-associated metabolites was sought among 1588 multiethnic participants from the Women's Health Initiative (WHI), a prospective population-based multiethnic cohort study of 161 808 postmenopausal women who were examined at baseline (1991-1995) and ongoing follow-up visits. Regression analyses were performed for each metabolite to examine the associations with incident CHD and CAC scores. Data were collected from the WHI between 1994 and 2009 and from the JHS between 2000 and 2015. All data were analyzed from November 2020 to August 2021.
EXPOSURES: Plasma metabolites.
MAIN OUTCOMES AND MEASURES: Incident CHD was defined as definite or probable myocardial infarction or definite fatal CHD in both the JHS and WHI cohorts. In the JHS cohort, silent myocardial infarction between examinations (as determined by electrocardiography) and coronary revascularization were included in the incident CHD analysis. Coronary artery calcium was measured using a 16-channel computed tomographic system and reported as an Agatston score.
RESULTS: Among 2346 African American individuals in the JHS cohort, the mean (SD) age was 56 (13) years, and 1468 individuals (62.6%) were female. Among 1588 postmenopausal women in the WHI cohort, the mean (SD) age was 67 (7) years; 217 individuals (13.7%) self-identified as African American, 1219 (76.8%) as non-Hispanic White, and 152 (9.6%) as other races or ethnicities. In the fully adjusted model including 1876 individuals, 46 of 303 targeted metabolites were associated with incident CHD (false discovery rate q <0.100). Data for 32 of the 46 metabolites were available in the WHI cohort, and 13 incident CHD-associated metabolites from the JHS cohort were replicated in the WHI cohort. A total of 1439 participants from the JHS cohort with available CAC scores received metabolomic profiling. Nine metabolites were associated with CAC scores. Minimal overlap was found between the results from the incident CHD and CAC analyses, with only 3 metabolites shared between the 2 analyses.
CONCLUSIONS AND RELEVANCE: This cohort study identified metabolites that were associated with incident CHD among African American individuals, including 13 incident CHD-associated metabolites that were replicated in a multiethnic population and 9 novel metabolites that included N-acylamides, leucine, and lipid species. These findings may help to elucidate common and distinct metabolic processes that may be associated with CHD among individuals with different self-identified race.
2021
Maximal oxygen uptake (VO2max) is a direct measure of human cardiorespiratory fitness and is associated with health. However, the molecular determinants of interindividual differences in baseline (intrinsic) VO2max, and of increases of VO2max in response to exercise training (ΔVO2max), are largely unknown. Here, we measure 5,000 plasma proteins using an affinity-based platform in over 650 sedentary adults before and after a 20-week endurance-exercise intervention and identify 147 proteins and 102 proteins whose plasma levels are associated with baseline VO2max and ΔVO2max, respectively. Addition of a protein biomarker score derived from these proteins to a score based on clinical traits improves the prediction of an individual's ΔVO2max. We validate findings in a separate exercise cohort, further link 21 proteins to incident all-cause mortality in a community-based cohort and reproduce the specificity of 75% of our key findings using antibody-based assays. Taken together, our data shed light on biological pathways relevant to cardiorespiratory fitness and highlight the potential additive value of protein biomarkers in identifying exercise responsiveness in humans.
2019
IMPORTANCE: Metabolic responses to exercise training are variable. Metabolite profiling may aid in the clinical assessment of an individual's responsiveness to exercise interventions.
OBJECTIVE: To investigate the association between a novel circulating biomarker of hepatic fat, dimethylguanidino valeric acid (DMGV), and metabolic health traits before and after 20 weeks of endurance exercise training.
DESIGN, SETTING, AND PARTICIPANTS: This study involved cross-sectional and longitudinal analyses of the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study, a 20-week, single-arm endurance exercise clinical trial performed in multiple centers between 1993 and 1997. White participants with sedentary lifestyles who were free of cardiometabolic disease were included. Metabolomic tests were performed using a liquid chromatography, tandem mass spectrometry method on plasma samples collected before and after exercise training in the HERITAGE study. Metabolomics and data analysis were performed from August 2017 to May 2018.
EXPOSURES: Plasma DMGV levels.
MAIN OUTCOME AND MEASURES: The association between DMGV levels and measures of body composition, plasma lipids, insulin, and glucose homeostasis before and after exercise training.
RESULTS: Among the 439 participants included in analyses from HERITAGE, the mean (SD) age was 36 (15) years, 228 (51.9%) were female, and the median (interquartile range) body mass index was 25 (22-28). Baseline levels of DMGV were positively associated with body fat percentage, abdominal visceral fat, very low-density lipoprotein cholesterol, and triglycerides, and inversely associated with insulin sensitivity, low-density lipoprotein cholesterol, high-density lipoprotein size, and high-density lipoprotein cholesterol (range of β coefficients, 0.17-0.46 [SEs, 0.026-0.050]; all P < .001, after adjusting for age and sex). After adjusting for age, sex, and baseline traits, baseline DMGV levels were positively associated with changes in small high-density lipoprotein particles (β, 0.14 [95% CI, 0.05-0.23]) and inversely associated with changes in medium and total high-density lipoprotein particles (β, -0.15 [95% CI, -0.24 to -0.05] and -0.19 [95% CI, -0.28 to -0.10], respectively), apolipoprotein A1 (β, -0.14 [95% CI, -0.23 to -0.05]), and insulin sensitivity (β, -0.13; P = 3.0 × 10-3) after exercise training.
CONCLUSIONS AND RELEVANCE: Dimethylguanidino valeric acid is an early marker of cardiometabolic dysfunction that is associated with attenuated improvements in lipid traits and insulin sensitivity after exercise training. Levels of DMGV may identify individuals who require additional therapies beyond guideline-directed exercise to improve their metabolic health.
2014
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases.
2013
Improvements in metabolite-profiling techniques are providing increased breadth of coverage of the human metabolome and may highlight biomarkers and pathways in common diseases such as diabetes. Using a metabolomics platform that analyzes intermediary organic acids, purines, pyrimidines, and other compounds, we performed a nested case-control study of 188 individuals who developed diabetes and 188 propensity-matched controls from 2,422 normoglycemic participants followed for 12 years in the Framingham Heart Study. The metabolite 2-aminoadipic acid (2-AAA) was most strongly associated with the risk of developing diabetes. Individuals with 2-AAA concentrations in the top quartile had greater than a 4-fold risk of developing diabetes. Levels of 2-AAA were not well correlated with other metabolite biomarkers of diabetes, such as branched chain amino acids and aromatic amino acids, suggesting they report on a distinct pathophysiological pathway. In experimental studies, administration of 2-AAA lowered fasting plasma glucose levels in mice fed both standard chow and high-fat diets. Further, 2-AAA treatment enhanced insulin secretion from a pancreatic β cell line as well as murine and human islets. These data highlight a metabolite not previously associated with diabetes risk that is increased up to 12 years before the onset of overt disease. Our findings suggest that 2-AAA is a marker of diabetes risk and a potential modulator of glucose homeostasis in humans.
Because metabolites are hypothesized to play key roles as markers and effectors of cardiometabolic diseases, recent studies have sought to annotate the genetic determinants of circulating metabolite levels. We report a genome-wide association study (GWAS) of 217 plasma metabolites, including >100 not measured in prior GWAS, in 2076 participants of the Framingham Heart Study (FHS). For the majority of analytes, we find that estimated heritability explains >20% of interindividual variation, and that variation attributable to heritable factors is greater than that attributable to clinical factors. Further, we identify 31 genetic loci associated with plasma metabolites, including 23 that have not previously been reported. Importantly, we include GWAS results for all surveyed metabolites and demonstrate how this information highlights a role for AGXT2 in cholesterol ester and triacylglycerol metabolism. Thus, our study outlines the relative contributions of inherited and clinical factors on the plasma metabolome and provides a resource for metabolism research.
2012
BACKGROUND: Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood.
METHODS AND RESULTS: To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmö Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease. We observed that metabolic risk factors (obesity, insulin resistance, high blood pressure, and dyslipidemia) were associated with multiple metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. We observed strong associations of insulin resistance traits with glutamine (standardized regression coefficients, -0.04 to -0.22 per 1-SD change in log-glutamine; P<0.001), glutamate (0.05 to 0.14; P<0.001), and the glutamine-to-glutamate ratio (-0.05 to -0.20; P<0.001) in the discovery sample (FHS); similar associations were observed in the replication sample (MDC). High glutamine-to-glutamate ratio was associated with lower risk of incident diabetes mellitus in FHS (odds ratio, 0.79; adjusted P=0.03) but not in MDC. In experimental models, administration of glutamine in mice led to both increased glucose tolerance (P=0.01) and decreased blood pressure (P<0.05).
CONCLUSIONS: Biochemical profiling identified circulating metabolites not previously associated with metabolic traits. Experimentally interrogating one of these pathways demonstrated that excess glutamine relative to glutamate, resulting from exogenous administration, is associated with reduced metabolic risk in mice.
2011
We developed a pipeline to integrate the proteomic technologies used from the discovery to the verification stages of plasma biomarker identification and applied it to identify early biomarkers of cardiac injury from the blood of patients undergoing a therapeutic, planned myocardial infarction (PMI) for treatment of hypertrophic cardiomyopathy. Sampling of blood directly from patient hearts before, during and after controlled myocardial injury ensured enrichment for candidate biomarkers and allowed patients to serve as their own biological controls. LC-MS/MS analyses detected 121 highly differentially expressed proteins, including previously credentialed markers of cardiovascular disease and >100 novel candidate biomarkers for myocardial infarction (MI). Accurate inclusion mass screening (AIMS) qualified a subset of the candidates based on highly specific, targeted detection in peripheral plasma, including some markers unlikely to have been identified without this step. Analyses of peripheral plasma from controls and patients with PMI or spontaneous MI by quantitative multiple reaction monitoring mass spectrometry or immunoassays suggest that the candidate biomarkers may be specific to MI. This study demonstrates that modern proteomic technologies, when coherently integrated, can yield novel cardiovascular biomarkers meriting further evaluation in large, heterogeneous cohorts.