Publications by Year: 2008

2008

Doria, Alessandro, Mary-Elizabeth Patti, and Ronald Kahn. (2008) 2008. “The Emerging Genetic Architecture of Type 2 Diabetes”. Cell Metab 8 (3): 186-200. https://doi.org/10.1016/j.cmet.2008.08.006.
Type 2 diabetes is a genetically heterogeneous disease, with several relatively rare monogenic forms and a number of more common forms resulting from a complex interaction of genetic and environmental factors. Previous studies using a candidate gene approach, family linkage studies, and gene expression profiling uncovered a number of type 2 genes, but the genetic basis of common type 2 diabetes remained unknown. Recently, a new window has opened on defining potential type 2 diabetes genes through genome-wide SNP association studies of very large populations of individuals with diabetes. This review explores the pathway leading to discovery of these genetic effects, the impact of these genetic loci on diabetes risk, the potential mechanisms of action of the genes to alter glucose homeostasis, and the limitations of these studies in defining the role of genetics in this important disease.
Tseng, Yu-Hua, Efi Kokkotou, Tim Schulz, Tian Lian Huang, Jonathon Winnay, Cullen Taniguchi, Thien Tran, et al. 2008. “New Role of Bone Morphogenetic Protein 7 in Brown Adipogenesis and Energy Expenditure”. Nature 454 (7207): 1000-4. https://doi.org/10.1038/nature07221.
Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
Norris, Andrew, Michael Hirshman, Jianrong Yao, Niels Jessen, Nicolas Musi, Lihong Chen, William Sivitz, Laurie Goodyear, and Ronald Kahn. (2008) 2008. “Endogenous Peroxisome Proliferator-Activated Receptor-Gamma Augments Fatty Acid Uptake in Oxidative Muscle”. Endocrinology 149 (11): 5374-83. https://doi.org/10.1210/en.2008-0100.
In the setting of insulin resistance, agonists of peroxisome proliferator-activated receptor (PPAR)-gamma restore insulin action in muscle and promote lipid redistribution. Mice with muscle-specific knockout of PPARgamma (MuPPARgammaKO) develop excess adiposity, despite reduced food intake and normal glucose disposal in muscle. To understand the relation between muscle PPARgamma and lipid accumulation, we studied the fuel energetics of MuPPARgammaKO mice. Compared with controls, MuPPARgammaKO mice exhibited significantly increased ambulatory activity, muscle mitochondrial uncoupling, and respiratory quotient. Fitting with this latter finding, MuPPARgammaKO animals compared with control siblings exhibited a 25% reduction in the uptake of the fatty acid tracer 2-bromo-palmitate (P 0.05) and a 13% increase in serum nonesterified fatty acids (P = 0.05). These abnormalities were associated with no change in AMP kinase (AMPK) phosphorylation, AMPK activity, or phosphorylation of acetyl-CoA carboxylase in muscle and occurred despite increased expression of fatty acid transport protein 1. Palmitate oxidation was not significantly altered in MuPPARgammaKO mice despite the increased expression of several genes promoting lipid oxidation. These data demonstrate that PPARgamma, even in the absence of exogenous activators, is required for normal rates of fatty acid uptake in oxidative skeletal muscle via mechanisms independent of AMPK and fatty acid transport protein 1. Thus, when PPARgamma activity in muscle is absent or reduced, there will be decreased fatty acid disposal leading to diminished energy utilization and ultimately adiposity.
Biddinger, Sudha, Joel Haas, Bian Yu, Olivier Bezy, Enxuan Jing, Wenwei Zhang, Terry Unterman, Martin Carey, and Ronald Kahn. (2008) 2008. “Hepatic Insulin Resistance Directly Promotes Formation of Cholesterol Gallstones”. Nat Med 14 (7): 778-82. https://doi.org/10.1038/nm1785.
Despite the well-documented association between gallstones and the metabolic syndrome, the mechanistic links between these two disorders remain unknown. Here we show that mice solely with hepatic insulin resistance, created by liver-specific disruption of the insulin receptor (LIRKO mice) are markedly predisposed toward cholesterol gallstone formation due to at least two distinct mechanisms. Disinhibition of the forkhead transcription factor FoxO1, increases expression of the biliary cholesterol transporters Abcg5 and Abcg8, resulting in an increase in biliary cholesterol secretion. Hepatic insulin resistance also decreases expression of the bile acid synthetic enzymes, particularly Cyp7b1, and produces partial resistance to the farnesoid X receptor, leading to a lithogenic bile salt profile. As a result, after twelve weeks on a lithogenic diet, all of the LIRKO mice develop gallstones. Thus, hepatic insulin resistance provides a crucial link between the metabolic syndrome and increased cholesterol gallstone susceptibility.
Rajala, Ammaji, Masaki Tanito, Yun Le, Ronald Kahn, and Raju Rajala. 2008. “Loss of Neuroprotective Survival Signal in Mice Lacking Insulin Receptor Gene in Rod Photoreceptor Cells”. J Biol Chem 283 (28): 19781-92. https://doi.org/10.1074/jbc.M802374200.
Insulin receptor (IR) signaling provides a trophic signal for transformed retinal neurons in culture, but the role of IR activity in vivo is unknown. We previously reported that light causes increased tyrosine phosphorylation of the IR in vivo, which leads to the downstream activation of the phosphoinositide 3-kinase and Akt pathway in rod photoreceptor cells. The functional role of IR in rod photoreceptor cells is not known. We observed that light stress induced tyrosine phosphorylation of the IR in rod photoreceptor cells, and we hypothesized that IR activation is neuroprotective. To determine whether IR has a neuroprotective role on rod photoreceptor cells, we used the Cre/lox system to specifically inactivate the IR gene in rod photoreceptors. Rod-specific IR knock-out mice have reduced the phosphoinositide 3-kinase and Akt survival signal in rod photoreceptors. The resultant mice exhibited no detectable phenotype when they were raised in dim cyclic light. However, reduced IR expression in rod photoreceptors significantly decreased retinal function and caused the loss of photoreceptors in mice exposed to bright light stress. These results indicate that reduced expression of IR in rod photoreceptor cells increases their susceptibility to light-induced photoreceptor degeneration. These data suggest that the IR pathway is important for photoreceptor survival and that activation of the IR may be an essential element of photoreceptor neuroprotection.
Tran, Thien, Yuji Yamamoto, Stephane Gesta, and Ronald Kahn. (2008) 2008. “Beneficial Effects of Subcutaneous Fat Transplantation on Metabolism”. Cell Metab 7 (5): 410-20. https://doi.org/10.1016/j.cmet.2008.04.004.
Subcutaneous (SC) and visceral (VIS) obesity are associated with different risks of diabetes and the metabolic syndrome. To elucidate whether these differences are due to anatomic location or intrinsic differences in adipose depots, we characterized mice after transplantation of SC or VIS fat from donor mice into either SC or VIS regions of recipient mice. The group with SC fat transplanted into the VIS cavity exhibited decreased body weight, total fat mass, and glucose and insulin levels. These mice also exhibited improved insulin sensitivity during hyperinsulinemic-euglycemic clamps with increased whole-body glucose uptake, glucose uptake into endogenous fat, and insulin suppression of hepatic glucose production. These effects were observed to a lesser extent with SC fat transplanted to the SC area, whereas VIS fat transplanted to the VIS area was without effect. These data suggest that SC fat is intrinsically different from VIS fat and produces substances that can act systemically to improve glucose metabolism.
Koch, Linda, Thomas Wunderlich, Jost Seibler, Christine Könner, Brigitte Hampel, Sigrid Irlenbusch, Georg Brabant, Ronald Kahn, Frieder Schwenk, and Jens Brüning. (2008) 2008. “Central Insulin Action Regulates Peripheral Glucose and Fat Metabolism in Mice”. J Clin Invest 118 (6): 2132-47. https://doi.org/10.1172/JCI31073.
Insulin resistance is a hallmark of type 2 diabetes, and many insights into the functions of insulin have been gained through the study of mice lacking the IR. To gain a better understanding of the role of insulin action in the brain versus peripheral tissues, we created 2 mouse models with inducible IR inactivation, 1 in all tissues including brain (IRDeltawb), and 1 restricted to peripheral tissues (IRDeltaper). While downregulation of IR expression resulted in severe hyperinsulinemia in both models, hyperglycemia was more pronounced in IRDeltawb mice. Both strains displayed a dramatic upregulation of hepatic leptin receptor expression, while only IRDeltaper mice displayed increased hepatic Stat3 phosphorylation and Il6 expression. Despite a similar reduction in IR expression in white adipose tissue (WAT) mass in both models, IRDeltawb mice had a more pronounced reduction in WAT mass and severe hypoleptinemia. Leptin replacement restored hepatic Stat3 phosphorylation and normalized glucose metabolism in these mice, indicating that alterations in glucose metabolism occur largely as a consequence of lipoathrophy upon body-wide IR deletion. Moreover, chronic intracerebroventricular insulin treatment of control mice increased fat mass, fat cell size, and adipose tissue lipoprotein lipase expression, indicating that CNS insulin action promotes lipogenesis. These studies demonstrate that central insulin action plays an important role in regulating WAT mass and glucose metabolism via hepatic Stat3 activation.
Tiwari, Swasti, Nikhil Sharma, Pritmohinder Gill, Peter Igarashi, Ronald Kahn, James Wade, and Carolyn Ecelbarger. 2008. “Impaired Sodium Excretion and Increased Blood Pressure in Mice With Targeted Deletion of Renal Epithelial Insulin Receptor”. Proc Natl Acad Sci U S A 105 (17): 6469-74. https://doi.org/10.1073/pnas.0711283105.
Renal tubule epithelial cells express the insulin receptor (IR); however, their value has not been firmly established. We generated mice with renal epithelial cell-specific knockout of the IR by Cre-recombinase-loxP recombination using a kidney-specific (Ksp) cadherin promoter. KO mice expressed significantly lower levels of IR mRNA and protein in kidney cortex (49-56% of the WT) and medulla (32-47%) homogenates. Immunofluorescence showed the greatest relative reduction in the thick ascending limb and collecting duct cell types. Body weight, kidney weight, and food and water intakes were not different from WT littermates. However, KO mice had significantly increased basal systolic blood pressure (BP, 15 mm Hg higher) as measured by radiotelemetry. In response to a volume load by gavage (20 ml/kg of body weight, 0.9% NaCl, 15% dextrose), KO mice had impaired natriuresis (37 +/- 10 versus 99 +/- 9 mmol of Na(+) per 2 h in WT). Furthermore, volume load led to a sustained increase in BP in KO mice only. In contrast, insulin administration i.p. (0.5 units/kg of body weight) resulted in a significant fall in BP in WT, but not in KO mice. To test the role of reduced renal nitric oxide (NO) production in these responses, basal urinary nitrates plus nitrites excretion (UNOx) was measured and found to be 61% lower in KO vs. WT mice. Furthermore, acute insulin increased UNOx by 202% in the WT, relative to a significantly blunted rise (67%) in KO animals. These results illuminate a previously uncharacterized role for renal IR to reduce BP and facilitate sodium and water excretion, possibly via NO production.
Emanuelli, Brice, Delphine Eberlé, Ryo Suzuki, and Ronald Kahn. 2008. “Overexpression of the Dual-Specificity Phosphatase MKP-4/DUSP-9 Protects Against Stress-Induced Insulin Resistance”. Proc Natl Acad Sci U S A 105 (9): 3545-50. https://doi.org/10.1073/pnas.0712275105.
Insulin resistance, a hallmark of type 2 diabetes and obesity, is associated with increased activity of MAP and stress-activated protein (SAP) kinases, which results in decreased insulin signaling. Our goal was to investigate the role of MAP kinase phosphatase-4 (MKP-4) in modulating this process. We found that MKP-4 expression is up-regulated during adipocyte and myocyte differentiation in vitro and up-regulated during fasting in white adipose tissue in vivo. Overexpression of MKP-4 in 3T3-L1 cells inhibited ERK and JNK phosphorylation and, to a lesser extent, p38MAPK phosphorylation. As a result, the phosphorylation of IRS-1 serine 307 induced by anisomycin was abolished, leading to a sensitization of insulin signaling with recovery of insulin-stimulated IRS-1 tyrosine phosphorylation, IRS-1 docking with phosphatidylinositol 3-kinase, and Akt phosphorylation. MKP-4 also reversed the effect of TNF-alpha to inhibit insulin signaling; alter IL-6, Glut1 and Glut4 expression; and inhibit insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Overexpression of MKP-4 in the liver of ob/ob mice decreased ERK and JNK phosphorylation, leading to a reduction in fed and fasted glycemia, improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin resistance, such as ERK and JNK, and increasing MKP-4 activity might provide a therapy for insulin-resistant disorders.