Publications by Year: 2003

2003

Kahn, Ronald. 2003. “Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes”. Exp Diabesity Res 4 (3): 169-82. https://doi.org/10.1155/EDR.2003.169.
A central component of type 2 diabetes and the metabolic syndrome is insulin resistance. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. Generation of mice carrying null mutations of the genes encoding proteins in the insulin signaling pathway provides a unique approach to determining the role of individual proteins in the molecular mechanism of insulin action and the pathogenesis of insulin resistance and diabetes. The role of the four major insulin receptor substrates (IRS1-4) in insulin and IGF-1 signaling have been examined by creating mice with targeted gene knockouts. Each produces a unique phenotype, indicating the complementary role of these signaling components. Combined heterozygous defects often produce synergistic or epistatic effects, although the final severity of the phenotype depends on the genetic background of the mice. Conditional knockouts of the insulin receptor have also been created using the Cre-lox system. These tissue specific knockouts have provide unique insights into the control of glucose homeostasis and the pathogenesis of type 2 diabetes, and have led to development of new hypotheses about the nature of the insulin action and development of diabetes.
Hirashima, Tsuruzoe, Kodama, Igata, Toyonaga, Ueki, Kahn, and Araki. (2003) 2003. “Insulin down-regulates insulin receptor substrate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway”. J Endocrinol 179 (2): 253-66.
Insulin receptor substrate (IRS)-1 and IRS-2 are the major substrates that mediate insulin action. Insulin itself regulates the expression of the IRS protein in the liver, but the underlying mechanisms of IRS-1 and IRS-2 regulation are not fully understood. Here we report that insulin suppressed the expression of both IRS-1 and IRS-2 proteins in Fao hepatoma cells. The decrease in IRS-1 protein occurred via proteasomal degradation without any change in IRS-1 mRNA, whereas the insulin-induced suppression of IRS-2 protein was associated with a parallel decrease in IRS-2 mRNA without changing IRS-2 mRNA half-life. The insulin-induced suppression of IRS-2 mRNA and protein was blocked by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, but not by the MAP kinase-ERK kinase (MEK) inhibitor, PD098059. Inhibition of Akt by overexpression of dominant-negative Akt also caused complete attenuation of the insulin-induced decrease in IRS-2 protein and partial attenuation of its mRNA down-regulation. Some nuclear proteins bound to the insulin response element (IRE) sequence on the IRS-2 gene in an insulin-dependent manner in vitro, and the binding was also blocked by the PI 3-kinase inhibitor. Reporter gene assay showed that insulin suppressed the activity of both human and rat IRS-2 gene promoters through the IRE in a PI 3-kinase-dependent manner. Our results indicate that insulin regulates IRS-1 and IRS-2 through different mechanisms and that insulin represses IRS-2 gene expression via a PI 3-kinase/Akt pathway.
Tai, Yu-Tzu, Klaus Podar, Laurence Catley, Yu-Hua Tseng, Masaharu Akiyama, Reshma Shringarpure, Renate Burger, et al. 2003. “Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling”. Cancer Res 63 (18): 5850-8.
Insulin-like growth factor-1 (IGF-I) is a growth and survival factor in human multiple myeloma (MM) cells. Here we examine the effect of IGF-I on MM cell adhesion and migration, and define the role of beta1 integrin in these processes. IGF-I increases adhesion of MM.1S and OPM6 MM cells to fibronectin (FN) in a time- and dose-dependent manner, as a consequence of IGF-IR activation. Conversely, blocking anti-beta1 integrin monoclonal antibody, RGD peptide, and cytochalasin D inhibit IGF-I-induced cell adhesion to FN. IGF-I rapidly and transiently induces association of IGF-IR and beta1 integrin, with phosphorylation of IGF-IR, IRS-1, and p85(PI3-K). IGF-I also triggers phosphorylation of AKT and ERK significantly. Both IGF-IR and beta1 integrin colocalize to lipid rafts on the plasma membrane after IGF-I stimulation. In addition, IGF-I triggers polymerization of F-actin, induces phosphorylation of p125(FAK) and paxillin, and enhances beta1 integrin interaction with these focal adhesion proteins. Importantly, using pharmacological inhibitors of phosphatidylinositol 3'-kinase (PI3-K) (LY294002 and wortmannin) and extracellular signal-regulated kinase (PD98059), we demonstrate that IGF-I-induced MM cell adhesion to FN is achieved only when PI3-K/AKT is activated. IGF-I induces a 1.7-2.2 (MM.1S) and 2-2.5-fold (OPM6) increase in migration, whereas blocking anti-IGF-I and anti-beta1 integrin monoclonal antibodies, PI3-K inhibitors, as well as cytochalasin D abrogate IGF-I-induced MM cell transmigration. Finally, IGF-I induces adhesion of CD138+ patient MM cells. Therefore, these studies suggest a role for IGF-I in trafficking and localization of MM cells in the bone marrow microenvironment. Moreover, they define the functional association of IGF-IR and beta1 integrin in mediating MM cell homing, providing the preclinical rationale for novel treatment strategies targeting IGF-I/IGF-IR in MM.
Rosen, Evan, Rohit Kulkarni, Pasha Sarraf, Umut Ozcan, Terumasa Okada, Chung-Hsin Hsu, Daniel Eisenman, et al. (2003) 2003. “Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis”. Mol Cell Biol 23 (20): 7222-9.
The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) is an important regulator of lipid and glucose homeostasis and cellular differentiation. Studies of many cell types in vitro and in vivo have demonstrated that activation of PPAR gamma can reduce cellular proliferation. We show here that activation of PPAR gamma is sufficient to reduce the proliferation of cultured insulinoma cell lines. We created a model with mice in which the expression of the PPARG gene in beta cells was eliminated (beta gamma KO mice), and these mice were found to have significant islet hyperplasia on a chow diet. Interestingly, the normal expansion of beta-cell mass that occurs in control mice in response to high-fat feeding is markedly blunted in these animals. Despite this alteration in beta-cell mass, no effect on glucose homeostasis in beta gamma KO mice was noted. Additionally, while thiazolidinediones enhanced insulin secretion from cultured wild-type islets, administration of rosiglitazone to insulin-resistant control and beta gamma KO mice revealed that PPAR gamma in beta cells is not required for the antidiabetic actions of these compounds. These data demonstrate a critical physiological role for PPAR gamma function in beta-cell proliferation and also indicate that the mechanisms controlling beta-cell hyperplasia in obesity are different from those that regulate baseline cell mass in the islet.
Ueki, Kohjiro, David Fruman, Claudine Yballe, Mathias Fasshauer, Johannes Klein, Tomoichiro Asano, Lewis Cantley, and Ronald Kahn. 2003. “Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling”. J Biol Chem 278 (48): 48453-66. https://doi.org/10.1074/jbc.M305602200.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.
Mora, Alfonso, Anthony Davies, Luc Bertrand, Isam Sharif, Grant Budas, Sofija Jovanović, Véronique Mouton, et al. 2003. “Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia”. EMBO J 22 (18): 4666-76. https://doi.org/10.1093/emboj/cdg469.
We employed Cre/loxP technology to generate mPDK1(-/-) mice, which lack PDK1 in cardiac muscle. Insulin did not activate PKB and S6K, nor did it stimulate 6-phosphofructo-2-kinase and production of fructose 2,6-bisphosphate, in the hearts of mPDK1(-/-) mice, consistent with PDK1 mediating these processes. All mPDK1(-/-) mice died suddenly between 5 and 11 weeks of age. The mPDK1(-/-) animals had thinner ventricular walls, enlarged atria and right ventricles. Moreover, mPDK1(-/-) muscle mass was markedly reduced due to a reduction in cardiomyocyte volume rather than cardiomyocyte cell number, and markers of heart failure were elevated. These results suggested mPDK1(-/-) mice died of heart failure, a conclusion supported by echocardiographic analysis. By employing a single-cell assay we found that cardiomyocytes from mPDK1(-/-) mice are markedly more sensitive to hypoxia. These results establish that the PDK1 signalling network plays an important role in regulating cardiac viability and preventing heart failure. They also suggest that a deficiency of the PDK1 pathway might contribute to development of cardiac disease in humans.
Norris, Andrew, Lihong Chen, Simon Fisher, Ildiko Szanto, Michael Ristow, Alison Jozsi, Michael Hirshman, et al. (2003) 2003. “Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones”. J Clin Invest 112 (4): 608-18. https://doi.org/10.1172/JCI17305.
Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by thiazolidinediones (TZDs) improves insulin resistance by increasing insulin-stimulated glucose disposal in skeletal muscle. It remains debatable whether the effect of TZDs on muscle is direct or indirect via adipose tissue. We therefore generated mice with muscle-specific PPARgamma knockout (MuPPARgammaKO) using Cre/loxP recombination. Interestingly, MuPPARgammaKO mice developed excess adiposity despite reduced dietary intake. Although insulin-stimulated glucose uptake in muscle was not impaired, MuPPARgammaKO mice had whole-body insulin resistance with a 36% reduction (P 0.05) in the glucose infusion rate required to maintain euglycemia during hyperinsulinemic clamp, primarily due to dramatic impairment in hepatic insulin action. When placed on a high-fat diet, MuPPARgammaKO mice developed hyperinsulinemia and impaired glucose homeostasis identical to controls. Simultaneous treatment with TZD ameliorated these high fat-induced defects in MuPPARgammaKO mice to a degree identical to controls. There was also altered expression of several lipid metabolism genes in the muscle of MuPPARgammaKO mice. Thus, muscle PPARgamma is not required for the antidiabetic effects of TZDs, but has a hitherto unsuspected role for maintenance of normal adiposity, whole-body insulin sensitivity, and hepatic insulin action. The tissue crosstalk mediating these effects is perhaps due to altered lipid metabolism in muscle.
Wolfrum, Christian, David Shih, Satoru Kuwajima, Andrew Norris, Ronald Kahn, and Markus Stoffel. (2003) 2003. “Role of Foxa-2 in adipocyte metabolism and differentiation”. J Clin Invest 112 (3): 345-56. https://doi.org/10.1172/JCI18698.
Hepatocyte nuclear factors-3 (Foxa-1-3) are winged forkhead transcription factors that regulate gene expression in the liver and pancreatic islets and are required for normal metabolism. Here we show that Foxa-2 is expressed in preadipocytes and induced de novo in adipocytes of genetic and diet-induced rodent models of obesity. In preadipocytes Foxa-2 inhibits adipocyte differentiation by activating transcription of the Pref-1 gene. Foxa-2 and Pref-1 expression can be enhanced in primary preadipocytes by growth hormone, suggesting that the antiadipogenic activity of growth hormone is mediated by Foxa-2. In differentiated adipocytes Foxa-2 expression leads to induction of gene expression involved in glucose and fat metabolism, including glucose transporter-4, hexokinase-2, muscle-pyruvate kinase, hormone-sensitive lipase, and uncoupling proteins-2 and -3. Diet-induced obese mice with haploinsufficiency in Foxa-2 (Foxa-2+/-) develop increased adiposity compared with wild-type littermates as a result of decreased energy expenditure. Furthermore, adipocytes of these Foxa-2+/- mice exhibit defects in glucose uptake and metabolism. These data suggest that Foxa-2 plays an important role as a physiological regulator of adipocyte differentiation and metabolism.
Patti, Mary Elizabeth, Atul Butte, Sarah Crunkhorn, Kenneth Cusi, Rachele Berria, Sangeeta Kashyap, Yoshinori Miyazaki, et al. 2003. “Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1”. Proc Natl Acad Sci U S A 100 (14): 8466-71. https://doi.org/10.1073/pnas.1032913100.
Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic beta cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. To identify genes potentially important in the pathogenesis of DM, we analyzed gene expression in skeletal muscle from healthy metabolically characterized nondiabetic (family history negative and positive for DM) and diabetic Mexican-American subjects. We demonstrate that insulin resistance and DM associate with reduced expression of multiple nuclear respiratory factor-1 (NRF-1)-dependent genes encoding key enzymes in oxidative metabolism and mitochondrial function. Although NRF-1 expression is decreased only in diabetic subjects, expression of both PPAR gamma coactivator 1-alpha and-beta (PGC1-alpha/PPARGC1 and PGC1-beta/PERC), coactivators of NRF-1 and PPAR gamma-dependent transcription, is decreased in both diabetic subjects and family history-positive nondiabetic subjects. Decreased PGC1 expression may be responsible for decreased expression of NRF-dependent genes, leading to the metabolic disturbances characteristic of insulin resistance and DM.