Sodoyez, Sodoyez-Goffaux, Treves, Kahn, and Frenckell. 1984. “In Vivo Imaging and Quantitative Analysis of Insulin-Receptor Interaction in Lean and Obese Zucker Rats”. Diabetologia 26 (3): 229-33.
Abstract
Imaging and quantitative analysis of insulin-receptor interaction was studied in vivo in lean and obese Zucker rats, using a recently developed technique in which purified Tyr A14 123I-monoiodoinsulin is intravenously injected and the tracer followed by scintillation scanning. The obese rats were 72% overweight, had near normal blood glucose concentrations and an 11-fold increase in plasma insulin concentration. In both groups of rats, the tracer was rapidly taken up by the liver (by a receptor mediated mechanism) and the kidneys (by a non-receptor mediated process). Past this maximum, radioactivity decreased in both organs as 123I-insulin was degraded and free 123I-iodide was released into the plasma compartment. Heart radioactivity (i.e. blood pool) mirrored that of the liver and kidneys. The rapid initial decrease of blood radioactivity was concomitant with liver and kidney uptake of 123I-insulin. Release of free iodide from these organs induced a slow secondary rise of blood radioactivity followed by a final decline corresponding to clearance of plasma iodide, mainly by urinary excretion. Liver radioactivity profiles of lean and obese rats were parallel. When expressed per g weight, liver radioactivity was significantly decreased in obese rats. However, due to hepatomegaly in obese rats, total liver radioactivity was significantly higher in homozygous fa/fa rats than in lean littermates. Furthermore, if the marked hyperinsulinaemia of the obese rats is taken into account, total bound insulin was enhanced in the liver of fa/fa rats whatever reference is used, either g weight or total liver.(ABSTRACT TRUNCATED AT 250 WORDS)
Last updated on 03/08/2023